On (co)homology locally connected spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hypergeometric Functions Connected with Quantum Cohomology of Flag Spaces

In the Givental’s work on the Gromov-Witten invariants for projective complete intersections, [G1], the principal role is played by certain formal power series connected with the quantum cohomology of a manifold. One has a manifold X with a natural torus action, with the finite number of fixed points, and one has a power series Zw associated with each fixed point xw. The coefficients of these s...

متن کامل

The Structure of Locally Connected Topological Spaces

0.1. This paper presents an investigation of the following problem. Exhibit a class X of topological spaces which contains all peano spaces and which has the following properties: (1) a cyclic element theory exists in each space of the class, (2) the abstract set consisting of all cyclic element of any space X of the class can be topologized so as to be a member of the class X, and (3) the hype...

متن کامل

One Dimensional Locally Connected S - spaces ∗ Joan

We construct, assuming Jensen’s principle ♦, a one-dimensional locally connected hereditarily separable continuum without convergent sequences.

متن کامل

One Dimensional Locally Connected S - spaces ∗

We construct, assuming Jensen’s principle ♦, a one-dimensional locally connected hereditarily separable continuum without convergent sequences.

متن کامل

On Non-locally Connected Boundaries of Cat(0) Spaces

In this paper, we study CAT(0) spaces with nonlocally connected boundary. We give some condition of a CAT(0) space whose boundary is not locally connected.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2002

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(01)00087-6